All spectra were obtained on a superconducting spectrometer built by Professor F. A. L. Anet of this department ( 59 kG ) with $251 \mathrm{MHz}{ }^{1} \mathrm{H}, 63.1 \mathrm{MHz}{ }^{13} \mathrm{C}$, and $80.5 \mathrm{MHz}{ }^{11} \mathrm{~B}$. The ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ spectra were obtained using continous wave techniques, while the ${ }^{13} \mathrm{C}$ spectra were obtained using Fourier transform techniques, normally with the accumulation of 10,000 transients.

The use of eq 1 implies that the magnetic properties vary linearly with temperature. The normal method used to evaluate $A_{\mathrm{n}}$ is from linear plots of $\left(\Delta \nu / \nu_{0}\right) v s .1 / T$. In the majority of the paramagnetic metallocarboranes, such a method of evaluation has proved impossible. The minimal temperature range imposed by the solubility of the complexes in appropriate solvents (ca. -30 to $+30^{\circ}$ ), coupled with the large uncertainty in accurate chemical shift measurements
on very broad peaks, precluded any meaningful temperature dependence data to be obtained. However, within the experimental limitations, the plots of $\left(\Delta \nu / \nu_{0}\right)$ vs. $1 / T$ were approximately linear. Rather the magnetic behavior of the ground state and excited state was estimated from the available esr and magnetic susceptbility data.

Acknowledgments. The authors are indebted to Drs. C. J. Jones, W. J. Evans, and D. F. Dustin for supplying many of the complexes used in this study. This research was supported, in part, by NASA NGL 05-007-003 and the National Science Foundation (GP-36451X).

# Self-Consistent Field Wave Functions of Boron 

Hydrides and Ions: $\mathrm{B}_{8} \mathrm{H}_{12}, \mathrm{~B}_{9} \mathrm{H}_{15}, \mathrm{~B}_{6} \mathrm{H}_{6}{ }^{2-}, \mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$, and $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$

John H. Hall, Jr., Dennis S. Marynick, and William N. Lipscomb*<br>Contribution from the Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138. Received September 21, 1973


#### Abstract

A minimum basis set of Slater orbitals has been used for $a b$ initio self-consistent field wave functions for $\mathrm{B}_{6} \mathrm{H}_{12}, \mathrm{~B}_{9} \mathrm{H}_{15}, \mathrm{~B}_{6} \mathrm{H}_{6}{ }^{2-}, \mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$, and $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$. From these wave functions we give bond midpoint densities, overlap populations, atomic charges, molecular dipole moments, diamagnetic susceptibilities, and diamagnetic shielding constants. Some analysis is also given relating probable sites of nucleophilic and electrophilic attack to the charge distributions, and some discussion is included relating to the few positive (unbound) occupied eigenvalues of the negative ions. A comparison is also made of these accurately computed SCF results with approximate SCF wave functions obtained by the method of partial retention of diatomic differential overlap (PRDDO). Excellent charge distributions and eigenvalues are obtained by the PRDDO method in computing times less than those of the SCF method by about a factor of 50 .


Boron hydrides, carboranes, and their derivatives have been studied extensively by theoretical and experimental methods in recent years. Synthetic methods have yielded a large number of new interesting compounds. Closely related theoretical studies have indicated new features of electronic structures, rearrangements, and reactivities of electron deficient species. Recent theoretical studies have included ab initio selfconsistent field (SCF) studies, ${ }^{1}$ from which localized molecular orbitals (LMO) have been obtained ${ }^{2,3}$ supporting three-center bond theory. ${ }^{4}$ New insight has also been obtained in terms of percentages of delocalization of bonds and, most notably, a new theory in which transferable fractional bonds occur. ${ }^{\text {a }}$ Simplification of the topological theory ${ }^{4,6}$ of localized

[^0]bonds in electron-deficient molecules has also occurred, allowing a conceptually simple but powerful method for understanding of valence structures and chemical reactivities and providing a systematization of boron chemistry.

Partly as a result of substantial progress in computer capabilities and effective programs, $a b$ initio SCF wave functions have recently become available for a number of small boron hydrides and their ions, including $\mathrm{BH}_{3},{ }^{7} \mathrm{BH}_{4}-,{ }^{8} \mathrm{~B}_{2} \mathrm{H}_{6},{ }^{3 \mathrm{a}} \mathrm{B}_{2} \mathrm{H}_{7}-,{ }^{9} \mathrm{~B}_{3} \mathrm{H}_{8}-,{ }^{10} \mathrm{~B}_{4} \mathrm{H}_{4},{ }^{11} \mathrm{~B}_{4} \mathrm{H}_{10},{ }^{12}$ $\mathrm{B}_{5} \mathrm{H}_{9},{ }^{12}$ and $\mathrm{B}_{6} \mathrm{H}_{10}$. ${ }^{3 \mathrm{c}}$ Among the larger boranes, only $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{13}$ has previously been studied by SCF methods. Here, we extend these theoretical methods to $\mathrm{B}_{8} \mathrm{H}_{12}, \mathrm{~B}_{9} \mathrm{H}_{15}, \mathrm{~B}_{6} \mathrm{H}_{6}{ }^{2-}, \mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$, and $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$. Some of the ground-state properties studied are charge distributions, overlap populations, midpoint densities in bonds, ionization potentials, atomization energies, diamagnetic susceptibilities, and diamagnetic contributions to chemical shifts.

In a separate section we compare $a b$ initio SCF results
(7) E. Switkes, R. M. Stevens, and W. N. Lipscomb, J. Chem. Phys., 51, 5229 (1969).
(8) R. A. Hegstrom, W. E. Palke, and W. N. Lipscomb, J. Chem. Phys., 46, 920 (1967).
(9) J. H. Hall, Jr., D. S. Marynick, and W. N. Lipscomb, Inorg. Chem., 11, 3126 (1972).
(10) I. M. Pepperberg and D. A. Dixon, private communication.
(11) J. H. Hall, Jr., I. R. Epstein, and W. N. Lipscomb, Inorg, Chem., 12,915(1973).
(12) E. Switkes, I. R. Epstein, J. A. Tossell, R. M. Stevens, and W. N. Lipscomb, J. Amer. Chem. Soc., 92, 3837 (1970).
(13) E. A. Laws, R. M. Stevens, and W. N. Lipscomb, J. Amer. Chem. Soc., 94, 4467 (1972).


Figure 1. $\quad B_{8} \mathrm{H}_{12}$, symmetry $C_{s}$.
with those obtained from a very efficient method for approximating these SCF results, the PRDDO method (partial retention of diatomic differential overlap ${ }^{14}$ ). This approximate method is an especially good compromise between accuracy and speed of computation for obtaining wave functions for molecular systems which are currently too large for direct $a b$ initio investigations.

## Methods

All ab initio SCF calculations, performed with Stevens' program, ${ }^{15}$ were made using a minimum basis set of Slater atomic orbitals (AO's). Exponents were taken from the optimized set for diborane (Table I). All one- and two-electron integrals were evaluated to an accuracy of 0.0001 au or better. In Table II we

Table I. Exponents

| $B$ | 1 s | 4.680 | $\mathrm{H}_{\mathrm{t}}$ | 1.147 |
| :---: | :---: | :---: | :---: | :---: |
|  | 2 s | 1.443 | $\mathrm{H}_{\mathrm{b}}$ | 1.209 |
|  | 2 p | 1.477 |  |  |

Table II. SCF Computation Times ${ }^{a}$

|  | AO <br> Antegral <br> orbital <br> integral <br> trans- <br> evaluation <br> formation | Solution <br> of the HF eq | Symmetry ${ }^{b}$ |  |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{~B}_{6} \mathrm{H}_{6}{ }^{2-}$ | 2 | 1 | 0.08 | $D_{4}$ |
| $\mathrm{~B}_{8} \mathrm{H}_{12}$ | 30 | 4 | 9 | $C_{s}$ |
| $\mathrm{~B}_{4} \mathrm{H}_{15}$ | 35 | 6 | 23 | $C_{s}$ |
| $\mathrm{~B}_{10} \mathrm{H}_{10}{ }^{2-}$ | 53 | 8 | 19 | $C_{2}$ |
| $\mathrm{~B}_{10} \mathrm{H}_{14}{ }^{2-}$ | 60 | 20 | 7 | $C_{2 v}$ |

${ }^{a}$ All times are in minutes for the IBM $360 / 195$ computer and do not include elapsed time. ${ }^{b}$ These are the point groups used in the calculation and were chosen for computational convenience. They do not necessarily reflect the complete symmetries of the molecules.
summarize computing times for (a) evaluation of integrals over AO's, (b) transformation of integrals over AO's to integrals over symmetry orbitals, and (c) solution of the SCF equations. ${ }^{16}$ Coordinates are given in Table III for $\mathrm{B}_{8} \mathrm{H}_{12}$ (Figure 1), $\mathrm{B}_{9} \mathrm{H}_{1 \overline{5}}$ (Figure 2), $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$ (Figure 3), $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ (Figure 4), and $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ (Figure 5). Except for $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$, the coordinates for the boron atoms were taken from the crystal structures for $\mathrm{B}_{8} \mathrm{H}_{12},{ }^{17} \mathrm{~B}_{9} \mathrm{H}_{15}{ }^{1,}{ }^{182} \mathrm{~B}_{10} \mathrm{H}_{10}{ }^{2-}$, ${ }^{19}$ and

[^1]

Figure 2. $\quad \mathrm{B}_{9} \mathrm{H}_{15}$, symmetry $C_{8}$.

Table III. Coordinates ${ }^{\boldsymbol{a}}$

|  |  | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-b}$ | $\mathrm{B}_{1}$ | 0.0 | 0.0 | 2.2685 |
|  | $\mathrm{H}_{1}$ | 0.0 | 0.0 | 4.5295 |
| $\mathrm{B}_{8} \mathrm{H}_{12}{ }^{\text {b }}$ | $\mathrm{B}_{1}$ | 2.8192 | 0.0 | 0.0 |
|  | $\mathrm{B}_{2}$ | 4.3926 | 0.0 | -3.0799 |
|  | $\mathrm{B}_{3}$ | 2.5430 | 2.6831 | -2.0461 |
|  | $\mathrm{B}_{4}$ | 0.0 | 1. 5819 | 0.0 |
|  | $\mathrm{B}_{7}$ | 2.6294 | -1.6089 | -5.2875 |
|  | $\mathrm{H}_{1}$ | 4.2406 | 0.0 | 1.7426 |
|  | $\mathrm{H}_{2}$ | 6.6408 | 0.0 | -3.1316 |
|  | $\mathrm{H}_{3}$ | 3.3531 | 4.7582 | -1.7384 |
|  | $\mathrm{H}_{4}$ | -1.6520 | 3.0856 | 1.2997 |
|  | $\mathrm{H}_{7}$ | 3.1886 | -2.9678 | -6.9897 |
|  | $\mathrm{H}_{9}$ | 0.8813 | 0.0 | -6.0557 |
|  | $\mathrm{H}_{10}$ | 0.6466 | 2.6107 | -3.7584 |
|  | $\mathrm{H}_{11}$ | -1.5737 | 0.0 | -1.1478 |
| $\mathrm{B}_{9} \mathrm{H}_{15}{ }^{\text {c }}$ | $\mathrm{B}_{1}$ | -3.0935 | 0.0 | 0.0 |
|  | $\mathrm{B}_{2}$ | 0.0003 | 0.0 | $-2.9054$ |
|  | $\mathrm{B}_{3}$ | -6.8895 | 0.0 | 0.0 |
|  | $\mathrm{B}_{4}$ | -5.6043 | 1.6955 | -2.7951 |
|  | $\mathrm{B}_{5}$ | -2.0644 | 2.7195 | $-2.6007$ |
|  | $\mathrm{B}_{6}$ | 0.0 | 1.6809 | 0.0 |
|  | $\mathrm{H}_{1}$ | -2.7509 | 0.0 | -6.3941 |
|  | $\mathrm{H}_{2}$ | 1.5114 | 0.0 | -4.5708 |
|  | $\mathrm{H}_{3}$ | -9.1326 | 0.0 | -0.1593 |
|  | $\mathrm{H}_{3}{ }^{\prime}$ | -5.6473 | 0.0 | 1.8745 |
|  | $\mathrm{H}_{4}$ | -6.8829 | 2.8822 | -4.2153 |
|  | $\mathrm{H}_{5}$ | -1.4450 | 4.6735 | -3.5254 |
|  | $\mathrm{H}_{6}$ | 1.3346 | 3.1795 | 1.0018 |
|  | $\mathrm{H}_{11}$ | -6.4062 | -2.3433 | -0.5569 |
|  | $\mathrm{H}_{12}$ | -2.0598 | -3.0236 | -0.1518 |
|  | $\mathrm{H}_{13}$ | -1.0771 | 0.0 | 1.4551 |
| $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-b}$ | $\mathrm{B}_{1}$ | 0.0 | 0.0 | 3.4846 |
|  | $\mathrm{B}_{2}$ | 2.5122 | 0.0 | 1.4221 |
|  | $\mathrm{H}_{1}$ | 0.0 | 0.0 | 5.7334 |
|  | $\mathrm{H}_{2}$ | 4.6379 | 0.0 | 2.1558 |
| $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{\text {2- }}$ d | $\mathrm{B}_{1}$ | 0.0 | 1.7007 | 1.1025 |
|  | $\mathrm{B}_{2}$ | 2.6817 | 0.0 | 0.0 |
|  | $\mathrm{B}_{5}$ | 1.7830 | 2.7721 | -1.5538 |
|  | $\mathrm{B}_{6}$ | 3.2088 | 0.0 | -3.2611 |
|  | $\mathrm{H}_{1}$ | 0.0 | 2.8095 | 3.0681 |
|  | $\mathrm{H}_{2}$ | 4.5626 | 0.0 | 1.1789 |
|  | $\mathrm{H}_{3}$ | 2.6852 | 4.7973 | $-1.4574$ |
|  | $\mathrm{H}_{6}$ | 5.4043 | 0.0 | $-3.6633$ |
|  | $\mathrm{H}_{6}{ }^{\prime}$ | 2.0323 | 0.0 | $-5.1579$ |
|  | $\mathrm{H}_{13}$ | 0.0 | 3.3088 | -3.3097 |

${ }^{a}$ Atomic units. ${ }^{b}$ The molecule is centered at ( $0,0,0$ ). ${ }^{c}$ The symmetry plane is $x z . \quad{ }^{d}$ The symmetry planes are $x z$ and $y z$.
$\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-20}$ and subsequently idealized to the symmetry expected for the molecule or ion when isolated from the crystalline environment. The $B-B$ bond length in $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$ was optimized and is in excellent

[^2]

Figure 3. $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$, symmetry $O_{h}$.


Figure 4. $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$, symmetry $D_{4 d}$. H atoms have been omitted for clarity.
agreement with the boron-boron distance from the X-ray diffraction study. ${ }^{21}$ The $\mathrm{B}-\mathrm{H}_{\mathrm{t}}$ distances were taken as $1.19 \AA$, except in $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ where a value of $1.20 \AA$ was assumed. Inasmuch as the accuracy of the X-ray diffraction study did not permit determination of the asymmetry of bridge hydrogen atoms in $\mathrm{B}_{8} \mathrm{H}_{15}$, although the bonding topology was established with certainty, we assumed that all hydrogen bridges were symmetrical in this molecule.

## SCF Results

$B_{8} H_{12}$. The eight-boron framework found in topological studies of boron hydrides has been a challenge to chemical synthesis. Structures for $\mathrm{B}_{8} \mathrm{H}_{12}$ (and $\mathrm{B}_{8} \mathrm{H}_{14}$ ) have been proposed, ${ }^{22}$ and the synthesis and crystal structure have subsequently been reported. ${ }^{17}$ Topological theory in its present form for boron hydrides (excluding carboranes) requires only central threecenter bonds in the boron framework, ${ }^{6 a}$ and leads to only five topologically allowed valence structures (Table IV). A localized valence structure which is a

Table IV. Topologically Allowed Structures for $\mathrm{B}_{8} \mathrm{H}_{12}{ }^{a}$

| B-B bonds |  |  |  |
| :---: | :---: | :---: | :---: |
| $3-2$ | $5-6$ | $(2)$ |  |
| $3-4$ | $5-6$ | (1) |  |
| $3-4$ | $2-8$ | (2) |  |

${ }^{a}$ Only B-B bonds are given because the three-center bonds are then uniquely determined aside from satisfying the molecular symmetry $\left(C_{s}\right)$. The number in parentheses gives the number of symmetrically equivalent structures with the indicated topology.

[^3]

Figure 5. $\quad \mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$, symmetry $C_{2 r}$.
combination of the originally proposed structure ${ }^{22}$ and other topologically allowed structures (Table IV) is presented in the PRDDO section.

Under certain conditions, static reactivity indices such as Mulliken charges ${ }^{23}$ and inner shell eigenvalues have been surprisingly successful in predicting electrophilic and nucleophilic attack in boron hydrides and especially in carboranes. ${ }^{3 c, 4,5,12,13}$ These indices are valid only if the course of the reaction is determined by the initial ground-state charge distribution and therefore must be restricted to relatively simple reactions, especially those not involving extensive rearrangements. In $\mathrm{B}_{8} \mathrm{H}_{12}$, both Mulliken charges and inner shell eigenvalues (Tables V and VI) suggest that $B_{2}$ and $B_{3}\left(B_{6}\right)$ are the most susceptible to electrophilic substitution and that order is $\mathrm{B}_{2}>\mathrm{B}_{3}>\mathrm{B}_{1}>\mathrm{B}_{7}$ and $\mathrm{B}_{4}$. Nucleophilic substitution presumably would occur preferentially in the reverse order. Perhaps more to the point, the cumulative charges in the highest filled molecular orbitals (Table VII) are in qualitative agreement with this order. The atoms with the most negative charges in the highest filled molecular orbitals are assumed to be most susceptible to electrophilic attack and least susceptible to nucleophilic attack. Examination of Table VII indicates that, for the larger boron hydrides, the summation of the atomic populations for the frontier orbitals must include more orbitals than were necessary for the smaller boranes ${ }^{12}$ (e.g., $\mathbf{B}_{4} \mathrm{H}_{10}, \mathbf{B}_{5} \mathrm{H}_{11}$, and $\mathrm{B}_{6} \mathrm{H}_{10}$ ) before the relative orders of nucleophilic and electrophilic substitutions stabilize. For example, in $\mathrm{B}_{8} \mathrm{H}_{12}$ the order of electrophilic substitution remains constant and agrees qualitatively with the order predicted by the eigenvalues and charges only after the populations of the first five frontier orbitals are summed. This trend is also adhered to in $\mathrm{B}_{9} \mathrm{H}_{10}, \mathrm{~B}_{10} \mathrm{H}_{10}{ }^{2}$, , $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$, and, as previously noted, ${ }^{12}$ in $\mathrm{B}_{10} \mathrm{H}_{14}$. Accurate SCF calculations on smaller boranes ${ }^{12}$ previously indicated that only two or three of the highest occupied orbitals need be summed before qualitative predictions about reactivity were possible. Dobson and Schaeffer ${ }^{24}$ indicate that Lewis base attack in $\mathrm{B}_{8} \mathrm{H}_{12}$ is most probable at $\mathrm{B}_{4}$, and least probable at $\mathrm{B}_{3}$, consistent with the theoretical results here. With respect to electrophilic substitution, expected theoretically at $\mathbf{B}_{2}$ preferentially, we add the qualification that, as in $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{8},{ }^{\text {ab }}$ there may be an additional problem in achieving effective orbital overlap in an electrophilic
(23) (a) R. S. Mulliken, J. Chem. Phys., 23, 1833, 1841, 2338, 2343 (1955); (b) J. A. Pople, Accounts Chem. Res., 3, 217 (1970).
(24) J. Dobson and R. Schaeffer, Inorg. Chem., 7, 406 (1968).

Table V. Midpoint Densities and SCF and PRDDO Overlap Populations

|  | Bond | Bond length ${ }^{a}$ | Midpoint density | Overlap p Ab initio | opulations PRDDO |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$ | $\mathrm{B}_{1}-\mathrm{B}_{2}$ | 1.70 | 0.120 | 0.530 | 0.532 |
|  | $\mathrm{B}_{1}-\mathrm{H}_{1}$ | 1.196 | 0.161 | 0.750 | 0.752 |
| $\mathrm{B}_{5} \mathrm{H}_{12}$ | $\mathrm{B}_{1}-\mathrm{B}_{2}$ | 1.83 | 0.125 | 0.380 | 0.390 |
|  | $\mathrm{B}_{1}-\mathrm{B}_{3}$ | 1.79 | 0.106 | 0.396 | 0.394 |
|  | $\mathrm{B}_{1}-\mathrm{B}_{4}$ | 1.71 | 0.124 | 0.486 | 0.468 |
|  | $\mathrm{B}_{2}-\mathrm{B}_{3}$ | 1.81 | 0.109 | 0.402 | 0.402 |
|  | $\mathrm{B}_{2}-\mathrm{B}$; | 1.72 | 0.124 | 0.474 | 0.472 |
|  | $\mathrm{B}_{3}-\mathrm{B}_{4}$ | 1.82 | 0.124 | 0.500 | 0.504 |
|  | $\mathrm{B}_{3}-\mathrm{B}_{8}$ | 1.81 | 0.123 | 0.358 | 0.362 |
|  | $\mathrm{B}_{4}-\mathrm{B}_{5}$ | 1.67 | 0.128 | 0.498 | 0.492 |
|  | $\mathrm{B}_{-}-\mathrm{B}_{8}$ | 1.70 | 0.129 | 0.422 | 0.422 |
|  | $\mathrm{B}_{1}-\mathrm{H}_{1}$ | 1.19 | 0.175 | 0.826 | 0.824 |
|  | $\mathrm{B}_{2}-\mathrm{H}_{2}$ | 1.19 | 0.177 | 0.830 | 0.828 |
|  | $\mathrm{B}_{3}-\mathrm{H}_{3}$ | 1.19 | 0.177 | 0.830 | 0.826 |
|  | $\mathrm{B}_{3}-\mathrm{H}_{10}$ | 1.33 | 0.114 | 0.388 | 0.392 |
|  | $\mathrm{B}_{4}-\mathrm{H}_{4}$ | 1.19 | 0.177 | 0.824 | 0.820 |
|  | $\mathrm{B}_{4}-\mathrm{H}_{11}$ | 1.33 | 0.111 | 8.376 | 0.380 |
|  | $\mathrm{B}_{7}-\mathrm{H}_{7}$ | 1.19 | 0.174 | 0.832 | 0.824 |
|  | $\mathrm{B}_{5}-\mathrm{H}_{9}$ | 1.30 | 0.177 | 0.376 | 0.380 |
|  | $\mathrm{B}_{8}-\mathrm{H}_{10}$ | 1.43 | 0.099 | 0.336 | 0.340 |
| B $\mathrm{H}_{15}$ | $\mathrm{B}_{1}-\mathrm{B}_{2}$ | 1.77 | 0.110 | 0.370 | 0.382 |
|  | $\mathrm{B}_{1}-\mathrm{B}_{4}$ | 1.79 | 0.104 | 0.402 | 0.410 |
|  | $\mathrm{B}_{1}-\mathrm{B}_{5}$ | 1.75 | 0.113 | 0.476 | 0.472 |
|  | $\mathrm{B}_{2}-\mathrm{B}_{5}$ | 1.81 | 0.108 | 0.394 | 0.394 |
|  | $\mathrm{B}_{2}-\mathrm{B}_{6}$ | 1.78 | 0.115 | 0.466 | 0.466 |
|  | $\mathrm{B}_{3}-\mathrm{B}_{4}$ | 1.86 | 0.093 | 0.281 | 0.284 |
|  | $\mathrm{B}_{4}-\mathrm{B}_{5}$ | 1.95 | 0.093 | 0.406 | 0.416 |
|  | $\mathrm{B}_{4}-\mathrm{B}_{3}$ | 1.76 | 0.097 | 0.470 | 0.460 |
|  | $\mathrm{B}_{-}-\mathrm{B}_{6}$ | 1.84 | 0.096 | 0.310 | 0.314 |
|  | $\mathrm{B}_{6}-\mathrm{B}_{7}$ | 1.78 | 0.103 | 0.388 | 0.374 |
|  | $\mathrm{B}_{1}-\mathrm{H}_{1}$ | 1.19 | 0.179 | 0.828 | 0.834 |
|  | $\mathrm{B}_{2}-\mathrm{H}_{2}$ | 1.19 | 0.176 | 0.833 | 0.830 |
|  | $\mathrm{B}_{3}-\mathrm{H}_{3}$ | 1.19 | 0.179 | 0.824 | 0.816 |
|  | $\mathrm{B}_{3}-\mathrm{H}_{3}^{\prime}$ | 1.19 | 0.173 | 0.814 | 0.812 |
|  | $\mathrm{B}_{3}-\mathrm{H}_{1}$, | 1.30 | 0.107 | 0.340 | 0.346 |
|  | $\mathrm{B}_{4}-\mathrm{H}_{4}$ | 1.19 | 0.176 | 0.826 | 0.820 |
|  | $\mathrm{B}_{4}-\mathrm{H}_{15}$ | 1.30 | 0.114 | 0.440 | 0.444 |
|  | $\mathrm{B}_{5}-\mathrm{H}_{5}$ | 1.19 | 0.177 | 0.832 | 0.826 |
|  | $\mathrm{B}_{5}-\mathrm{H}_{14}$ | 1.31 | 0.106 | 0.384 | 0.384 |
|  | $\mathrm{B}_{6}-\mathrm{H}_{6}$ | 1.19 | 0.178 | 0.832 | 0.824 |
|  | $\mathrm{B}_{6}-\mathrm{H}_{13}$ | 1.30 | 0.111 | 0.381 | 0.388 |
|  | $\mathrm{B}_{6}-\mathrm{H}_{14}$ | 1.31 | 0.115 | 0.402 | 0.412 |
| $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ | $\mathrm{B}_{1}-\mathrm{B}_{2}$ | 1.72 | 0.127 | 0.436 | 0.538 |
|  | $\mathrm{B}_{2}-\mathrm{B}_{3}$ | 1.88 | 0.096 | 0.388 | 0.336 |
|  | $\mathrm{B}_{8}-\mathrm{B}_{6}$ | 1.82 | 0.108 | 0.453 | 0.458 |
|  | $\mathrm{B}_{1}-\mathrm{H}_{1}$ | 1.19 | 0.161 | 0.786 | 0.782 |
|  | $\mathrm{B}_{2}-\mathrm{H}_{2}$ | 1.19 | 0.163 | 0.780 | 0.776 |
| $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ | $\mathrm{B}_{1}-\mathrm{B}_{2}$ | 1.78 | 0.112 | 0.418 | 0.424 |
|  | $\mathrm{B}_{1}-\mathrm{B}_{3}$ | 1.81 | 0.109 | 0.400 | 0.402 |
|  | $\mathrm{B}_{1}-\mathrm{B}_{5}$ | 1.78 | 0.116 | 0.451 | 0.450 |
|  | $\mathrm{B}_{2}-\mathrm{B}$; | 1.75 | 0.113 | 0.466 | 0.468 |
|  | $\mathrm{B}_{2}-\mathrm{B}_{6}$ | 1.75 | 0.107 | 0.421 | 0.426 |
|  | $\mathrm{B}_{5}-\mathrm{B}_{6}$ | 1.88 | 0.110 | 0.468 | 0.470 |
|  | $\mathrm{B}_{5}-\mathrm{B}_{10}$ | 1.89 | 0.089 | 0.265 | 0.274 |
|  | $\mathrm{B}_{1}-\mathrm{H}_{1}$ | 1.19 | 0.165 | 0.796 | 0.792 |
|  | $\mathrm{B}_{2}-\mathrm{H}_{2}$ | 1.17 | 0.172 | 0.812 | 0.806 |
|  | $\mathrm{B}_{5}-\mathrm{H}_{5}$ | 1.17 | 0.169 | 0.794 | 0.788 |
|  | $\mathrm{B}_{5}-\mathrm{H}_{13}$ | 1.35 | 0.105 | 0.400 | 0.404 |
|  | $\mathrm{B}_{6}-\mathrm{H}_{6}$ | 1.18 | 0.166 | 0.780 | 0.770 |
|  | $\mathrm{B}_{6}-\mathrm{H}_{6}{ }^{\prime}$ | 1.18 | 0.167 | 0.787 | 0.786 |
| $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{-}$ | $\mathrm{B}_{2}-\mathrm{B}_{2}$ |  |  |  | 0.440 |
|  | $\mathrm{B}_{1}-\mathrm{H}_{1}$ |  |  |  | 0.794 |

${ }^{a}$ Ảngstrom units.
transition state involving $B_{2}$, which lies on the molecular plane of symmetry.

The energy analysis for $\mathrm{B}_{8} \mathrm{H}_{12}$ is given in Table VIII. The calculated molecular dipole moment (Table IX) is possibly too large by a factor of about 2 , if our previous results on minimum basis set SCF results ${ }^{3 c, 12,13}$ apply also to $\mathrm{B}_{8} \mathrm{H}_{12}$.

Table VI. Ab Initio SCF and PRDDO Inner Shell Eigenvalues and Mulliken Charges

|  | ---Ab Initio SCF---- |  |  | PRDDO |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Atom | Eigenvalue ${ }^{\text {a }}$ | Charge | Eigenvalue ${ }^{\text {a }}$ | Charge |
| $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{\text {- }}$ | $\mathrm{B}_{1}$ | -7.021 | -0.25 | -7.020 | -0.22 |
|  | $\mathrm{H}_{1}$ |  | -0.08 |  | -0.08 |
| $\mathrm{B}_{8} \mathrm{H}_{12}$ | $\mathrm{B}_{2}$ | $-7.567$ | -0.01 | -7.567 | -0.04 |
|  | $\mathrm{B}_{3}$ | -7.590 | 0.00 | -7.595 | 0.00 |
|  | $\mathrm{B}_{1}$ | -7.597 | +0.05 | -7.598 | $+0.03$ |
|  | $\mathrm{B}_{4}$ | -7.603 | +0.08 | -7.612 | +0.68 |
|  | $\mathrm{B}_{7}$ | -7.644 | +0.07 | -7.656 | +0.08 |
|  | $\mathrm{H}_{1}$ |  | -0.06 |  | -0.05 |
|  | $\mathrm{H}_{2}$ |  | -0.07 |  | -0.06 |
|  | $\mathrm{H}_{3}$ |  | -0.06 |  | -0.06 |
|  | $\mathrm{H}_{4}$ |  | -0.06 |  | -0.05 |
|  | $\mathrm{H}_{7}$ |  | -0.04 |  | -0.04 |
|  | $\mathrm{H}_{9}$ |  | +0.03 |  | +0.03 |
|  | $\mathrm{H}_{10}$ |  | +0.04 |  | +0.05 |
|  | $\mathrm{H}_{11}$ |  | -0.02 |  | -0.03 |
| $\mathrm{B}_{3} \mathrm{H}_{1}$; | $\mathrm{B}_{2}$ | -7.568 | -0.02 | -7.568 | -0.05 |
|  | $\mathrm{B}_{4}$ | -7.590 | +0.01 | -7.594 | $+0.00$ |
|  | $\mathrm{B}_{1}$ | -7.607 | +0.05 | -7.608 | $+0.03$ |
|  | $\mathrm{B}_{5}$ | -7.611 | +0.05 | -7.620 | +0.06 |
|  | $\mathrm{B}_{3}$ | -7.616 | +0.02 | -7.631 | +0.03 |
|  | $\mathrm{B}_{6}$ | -7.672 | $+0.10$ | -7.672 | $+0.10$ |
|  | $\mathrm{H}_{1}$ |  | -0.04 |  | -0.03 |
|  | $\mathrm{H}_{2}$ |  | -0.07 |  | -0.06 |
|  | $\mathrm{H}_{3}$ |  | -0.05 |  | -0.07 |
|  | $\mathrm{H}_{3}{ }^{\prime}$ |  | -0.09 |  | -0.10 |
|  | $\mathrm{H}_{4}$ |  | -0.06 |  | -0.06 |
|  | $\mathrm{H}_{5}$ |  | -0.06 |  | -0.06 |
|  | $\mathrm{H}_{6}$ |  | -0.03 |  | -0.03 |
|  | $\mathrm{H}_{11}$ |  | +0.06 |  | +0.07 |
|  | $\mathrm{H}_{12}$ |  | +0.02 |  | +0.03 |
|  | $\mathrm{H}_{13}$ |  | +0.02 |  | +0.02 |
| $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ | $\mathrm{B}_{1}$ | $-7.215$ | -0.06 | $-7.131$ | -0.06 |
|  | $\mathrm{B}_{2}$ | $-7.162$ | 0.00 | $-7.167$ | $-0.01$ |
|  | $\mathrm{H}_{1}$ |  | -0.20 |  | -0.19 |
|  | $\mathrm{H}_{2}$ |  | -0.19 |  | -0.18 |
| $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ | $\mathrm{B}_{6}$ | -7.146 | -0.02 | -7.156 | -0.02 |
|  | $\mathrm{B}_{2}$ | -7.178 | -0.03 | -7.185 | -0.03 |
|  | $\mathrm{B}_{5}$ | -7.198 | +0.01 | $-7.208$ | 0.00 |
|  | $\mathrm{B}_{2}$ | -7.216 | +0.03 | -7.220 | +0.01 |
|  | $\mathrm{H}_{1}$ |  | $-0.17$ |  | -0.16 |
|  | $\mathrm{H}_{2}$ |  | -0.15 |  | -0.14 |
|  | $\mathrm{H}_{3}$ |  | -0.17 |  | -0.17 |
|  | $\mathrm{H}_{5}$ |  | -0.20 |  | -0.21 |
|  | $\mathrm{H}_{6}{ }^{\prime}$ |  | -0.14 |  | -0.14 |
|  | $\mathrm{H}_{13}$ |  | $+0.11$ |  | $+0.02$ |
| $\mathrm{B}_{12} \mathrm{H}_{22}{ }^{2-}$ | $\mathrm{B}_{1}$ |  |  | -7.210 | -0.01 |
|  | $\mathrm{H}_{1}$ |  |  |  | -0.16 |

${ }^{a}$ Atomic units.

Table VII. Sum of the Atomic Populations in Several Highest Occupied Orbitals ${ }^{a}$

| Molecule | Atom | ---Cumulative population---- |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 |
| $\mathrm{B}_{8} \mathrm{H}_{12}$ | $\mathrm{B}_{1}$ | 0.04 | 0.06 | 0.44 | 0.78 | 1.03 | 1.13 |
|  | $\mathrm{B}_{2}$ | 0.12 | 0.54 | 0.98 | 1.06 | 1.42 | 1.46 |
|  | $\mathrm{B}_{3}$ | 0.22 | 0.52 | 0.62 | 0.96 | 1.05 | 1.26 |
|  | $\mathrm{B}_{4}$ | 0.46 | 0.60 | 0.74 | 0.86 | 0.96 | 1.01 |
|  | $\mathrm{B}_{7}$ | 0.16 | 0.32 | 0.38 | 0.40 | 0.52 | 0.65 |
| $\mathrm{B}_{3} \mathrm{H}_{15}$ | $\mathrm{B}_{1}$ | 0.18 | 0.10 | 0.46 | 0.74 | 0.94 | 0.96 |
|  | $\mathrm{B}_{2}$ | 0.00 | 0.60 | 0.82 | 1.07 | 1.23 | 1.50 |
|  | $\mathrm{B}_{3}$ | 0.08 | 0.06 | 0.08 | 0.28 | 0.30 | 0.62 |
|  | $\mathrm{B}_{4}$ | 0.15 | 0.58 | 0.86 | 0.94 | 1.09 | 1.23 |
|  | $\mathrm{B}_{5}$ | 0.24 | 0.53 | 0.60 | 0.62 | 0.89 | 0.89 |
|  | $\mathrm{B}_{6}$ | 0.43 | 0.24 | 0.30 | 0.35 | 0.40 | 0.50 |
| $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ | $\mathrm{B}_{1}$ | 0.38 | 0.78 | 0.78 | 0.78 | 0.96 | 1.14 |
|  | $\mathrm{B}_{2}$ | 0.24 | 0.30 | 0.42 | 0.75 | 0.94 | 1.05 |
| $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ | $\mathrm{B}_{1}$ | 0.14 | 0.22 | 0.65 | 0.89 | 0.89 | 1.00 |
|  | $\mathrm{B}_{2}$ | 0.30 | 0.08 | 0.11 | 0.38 | 0.40 | 0.63 |
|  | $\mathrm{B}_{5}$ | 0.24 | 0.52 | 0.68 | 0.73 | 0.84 | 1.02 |
|  | $\mathrm{B}_{6}$ | 0.34 | 0.60 | 0.65 | 0.81 | 0.99 | 1.02 |

[^4]Table VIII. Energetics ${ }^{\text {a }}$

|  | $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$ | $\mathrm{B}_{8} \mathrm{H}_{12}$ | $\mathrm{~B}_{9} \mathrm{H}_{15}$ | $\mathrm{~B}_{10} \mathrm{H}_{10}{ }^{2-}$ | $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Nuclear attraction energy | -676.515 | -1036.372 | -1243.481 | -1360.920 | -1432.480 |
| Nuclear repulsion energy | 153.615 | 283.783 | 357.539 | 376.673 |  |
| Kinetic energy | 153.304 | 204.284 | 230.578 | 253.813 | 0.386 |
| $-E / T$ | 0.9854 | 0.9985 | 0.9988 | 0.9935 | 0.195 |
| Total energy $^{\text {Atomization energy }}{ }^{b}$ | -151.078 | -203.985 | -230.319 | -252.173 | -254.378 |
| Ionization potential $^{c}$ | 1.152 | 2.172 | 2.551 | 2.297 |  |

${ }^{a}$ Atomic units. ${ }^{b}$ Using molecular exponents for the reference atomic SCF energies. ${ }^{c}$ Ionization potential of highest occupied molecular orbital.

Table IX. Dipole Moments ${ }^{a}$

|  | ---Components--_- |  |  | Resultant |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ |  |
| $\mathrm{B}_{8} \mathrm{H}_{12}$ | $-1.995$ | 0.0 | -0.858 | 1.475 au |
|  | -3.045 | 0.0 | -2.180 | 3.745 D |
| $\mathrm{B}_{9} \mathrm{H}_{15}$ | 0.244 | 0.0 | 1.438 | 1.458 au |
|  | 0.618 | 0.0 | 3.651 | 3.703 D |

${ }^{a}$ The dipole moment of a negative ion such as $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ is origin dependent and hence is not given here.
$\mathbf{B}_{3} \mathrm{H}_{15}$. Most Lewis bases are expected ${ }^{25}$ to cleave $\mathrm{BH}_{3}$ from the exposed doubly bridged $\mathrm{BH}_{2}$ group in $\mathrm{B}_{9} \mathrm{H}_{15}$, at $\mathrm{B}_{3}$ in Figure 2, with addition of the base (L) to $\mathrm{B}_{4}$ (or $\mathrm{B}_{9}$ ) of $\mathrm{B}_{9} \mathrm{H}_{15}$ to yield $\mathrm{B}_{8} \mathrm{H}_{12} \mathrm{~L}$. This process has been shown to occur by Schaeffer and Snedden. ${ }^{26}$ On the other hand, for substitution reactions the Mulliken charges, inner shell eigenvalues (Table VI), and outermost orbital populations (Table VII) suggest electrophilic attack in the order $\mathrm{B}_{2}>\mathrm{B}_{4}>\mathrm{B}_{1}>\mathrm{B}_{5}>\mathrm{B}_{3}, \mathrm{~B}_{6}$, while nucleophilic attack would be expected in approximately the reverse order. We base our reactivity predictions largely on inner shell eigenvalues and cumulative outermost orbital populations and not on the possibly less reliable Mulliken charges.
The probable directions of the asymmetries of the bridge hydrogens in $\mathrm{B}_{9} \mathrm{H}_{15}$ can be deduced from the overlap populations. Although the bridge hydrogens in the calculation were placed symmetrically with respect to the two bonded borons, the overlap populations of $\mathrm{B}_{4}-\mathrm{H}_{15}, \mathrm{~B}_{3}-\mathrm{H}_{15}, \mathrm{~B}_{6}-\mathrm{H}_{14}$, and $\mathrm{B}_{5}-\mathrm{H}_{14}$ suggested that $H_{15}$ is more closely bonded to $B_{4}$ than to $B_{3}$, and that $\mathrm{H}_{14}$ is closer to $\mathrm{B}_{6}$ than to $\mathrm{B}_{5}$. These asymmetries are in agreement with the early, less precise, X-ray diffraction study ${ }^{188}$ of $\mathrm{B}_{9} \mathrm{H}_{15}$ and with a recent unpublished X-ray diffraction study ${ }^{186}$ which determined the bridge hydrogen positions more precisely. Finally, the bridge hydrogen asymmetry in $\mathrm{B}_{9} \mathrm{H}_{15}$ agrees with that found in $\mathrm{B}_{4} \mathrm{H}_{10},{ }^{4}$ in the regions where these molecules have a common topology.
$\mathbf{B}_{6} \mathrm{H}_{6}{ }^{2-}$. No previous ab initio SCF studies have been made on $\mathrm{B}_{n} \mathrm{H}_{n}{ }^{2-}$ species, which are generally closed polyhedra with $n$ boron vertices, each with an external B-H bond. The predicted ${ }^{27} \mathrm{~B}_{6} \mathrm{H}_{6}{ }^{2-}$ ion has been discovered ${ }^{19}$ and is isoelectronic with the two isomers of $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$.

We have optimized the B-B distance to a value of $1.70 \AA$, assuming a $\mathrm{B}-\mathrm{H}$ distance of $1.19 \AA$. While the

[^5]agreement with the experimental value ${ }^{21}$ of $1.69 \pm$ $0.01 \AA$ is excellent, we feel certain from the virial ratio of 0.985 (Table VIII) that the orbital exponents are not optimal but probably are too large if the behavior in other negative ions is a good indication. ${ }^{3 \mathrm{a},}{ }^{8}$. We have, nevertheless, retained the diborane exponents primarily for consistency but also in order not to use excessive computing time.
The wave function (Table X) shows that 12 of the 26 valence electrons of $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$ are associated with positive SCF eigenvalues. We discuss this behavior below. The energy gap to the lowest unoccupied molecular orbital ( 0.664 au ) is large, and the inner shell eigenvalues of about -7.02 au show the destabilizing effect of additional electron repulsions as compared with the inner shell eigenvalues of -7.55 to -7.65 au in neutral boron hydrides. Also the valence shell eigenvalues are generally higher in energy in the negative ions as compared with those in the neutral species, for the same reason. These effects are quite general for the known species of molecules and ions.
$\mathbf{B}_{10} \mathbf{H}_{10}{ }^{2}$-. This anion, a cage bicapped Archimedian antiprism (Figure 4), has an extensive known derivative chemistry, as does $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{2-} .28$ Electrophilic and nucleophilic substitution have been studied, but the detailed mechanisms have not always been elucidated in enough detail to establish the relation between the initial steps and the position of substitution. Probably, most electrophilic attack occurs at the apical position and most nucleophilic attack occurs at the equatorial position, unless a cooperative transition state occurs in a complex. Mulliken charges, inner shell eigenvalues, and outermost orbitals are consistent with this assignment, but further studies are required, both experimental and theoretical, on mechanisms and especially on possible transition states. Qualitative agreement of the relative charges on the apex and equatorial atoms was obtained by Armstrong, Perkins, and Stewart, ${ }^{29}$ but their quantitative disagreement with our SCF results is several times the charges that we report here (Table VI).

No preferred valence structure can be assigned for $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$, especially in the absence of a study of localized molecular orbitals. The 72 topologically allowed valence structures ${ }^{6}$ argue for considerable resonance stabilization and for a reasonably even distribution of charge in this anion. The closed polyhedral structure also makes preferential removal of a boron difficult, as compared with the more open species of the form $\mathrm{B}_{n} \mathrm{H}_{n+4}$ or especially $\mathrm{B}_{n} \mathrm{H}_{n+6}$, where $n>2$.

[^6]Table X. Eigenvalues ${ }^{a}$

| $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}\left(O_{h}\right)$ | $\mathrm{B}_{8} \mathrm{H}_{12}\left(C_{8}\right)$ | $\mathrm{B}_{9} \mathrm{H}_{15}\left(C_{s}\right)$ | $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}\left(D_{4 d}\right)$ | $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}\left(C_{2 v}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\left(3 \mathrm{t}_{\text {ag }}+0.808\right)$ | $\left(10 \mathrm{a}^{\prime \prime}+0.096\right)$ | $\left(11 a^{\prime \prime}+0.101\right)$ | $\left(5 \mathrm{e}_{1}+0.604\right)$ | $\left(10 b_{1}+0.567\right)$ |
| $3 \mathrm{t}_{1 \mathrm{lu}} 00.144$ | $17 a^{\prime}-0.338$ | $20 \mathrm{a}^{\prime}-0.353$ | $4 \mathrm{e}_{1} 0.056$ | $4 \mathrm{a}_{2} \quad 0.090$ |
| $2 \mathrm{t}_{2 \mathrm{~g}} \quad 0.024$ | $9 a^{\prime \prime}-0.428$ | $10 a^{\prime \prime}-0.420$ | $3 \mathrm{e}_{2} \quad 0.007$ | $7 \mathrm{~b}_{2}-0.018$ |
| $2 \mathrm{e}_{\mathrm{g}}-0.108$ | $16 a^{\prime}-0.454$ | 19a' -0.456 | $3 \mathrm{e}_{3}-0.041$ | $13 a_{1}-0.023$ |
| $3 \mathrm{a}_{1 \mathrm{~g}}-0.134$ | $8 a^{\prime \prime}-0.462$ | $18 a^{\prime}-0.456$ | $5 a_{1}-0.054$ | $9 b_{1}-0.044$ |
| $2 \mathrm{t}_{\text {lu }}-0.208$ | $15 \mathrm{a}^{\prime}-0.474$ | $9 a^{\prime}-0.463$ | $3 \mathrm{e}_{1}-0.105$ | $12 a_{1}-0.074$ |
| $2 \mathrm{a}_{1 \mathrm{~g}}-0.498$ | $14 a^{\prime}-0.490$ | 17a' -0.493 | $5 \mathrm{~b}_{2}-0.144$ | $3 \mathrm{a}_{2}-0.083$ |
| 1 s levels: | $13 \mathrm{a}^{\prime}-0.510$ | 16a' -0.502 | $4 \mathrm{~b}_{2}-0.165$ | $8 \mathrm{~b}_{1}-0.085$ |
| -7.021 | $7 a^{\prime \prime}-0.527$ | $8 a^{\prime \prime}-0.503$ | $2 \mathrm{e}_{2}-0.218$ | $11 a_{1}-0.094$ |
|  | $12 \mathrm{a}^{\prime}-0.554$ | $15 \mathrm{a}^{\prime}-0.527$ | $2 \mathrm{e}_{3}-0.225$ | $6 b_{2}-0.117$ |
|  | $6 a^{\prime \prime}-0.556$ | $7 \mathrm{a}^{\prime \prime}-0.540$ | $5 a_{1}-0.238$ | $10 a_{1}-0.146$ |
|  | $11 a^{\prime}-0.607$ | $14 \mathrm{a}^{\prime}-0.561$ | $4 a_{1}-0.254$ | $5 b_{2}-0.158$ |
|  | $5 a^{\prime \prime}-0.636$ | $13 a^{\prime}-0.595$ | $2 \mathrm{e}_{1}-0.388$ | $7 b_{1}-0.164$ |
|  | $10 \mathrm{a}^{\prime}-0.643$ | $12 \mathrm{a}^{\prime}-0.620$ | $3 \mathrm{~b}_{2}-0.442$ | $6 b_{1}-0.202$ |
|  | $9 a^{\prime}-0.669$ | $6 \mathrm{a}^{\prime \prime}-0.621$ | $3 \mathrm{a}_{1}-0.619$ | $9 a_{1}-0.228$ |
|  | $8 a^{\prime}-0.773$ | $11 a^{\prime}-0.690$ | 1s levels: | $8 a_{1}-0.261$ |
|  | $4 a^{\prime \prime}-0.827$ | $10 a^{\prime}-0.700$ | -7.125 (apex) | $4 \mathrm{~b}_{2}-0.263$ |
|  | $7 a^{\prime}-0.903$ | $5 \mathrm{a}^{\prime \prime}-0.721$ | -7.162 | $5 b_{1}-0.277$ |
|  | $6 a^{\prime}-1.033$ | $9 a^{\prime}-0.831$ |  | $2 \mathrm{a}_{2}-0.282$ |
|  | 1 s levels: | $4 \mathrm{a}^{\prime \prime}-0.857$ |  | $7 a_{1}-0.339$ |
|  | -7.567 to | $8 \mathrm{a}^{\prime}-0.927$ |  | $6 \mathrm{a}_{1}-0.407$ |
|  | -7.644 | $7 \mathrm{a}^{\prime}-1.031$ |  | $4 \mathrm{~b}_{1}-0.468$ |
|  |  | 1s levels: |  | $3 \mathrm{~b}_{2}-0.484$ |
|  |  | -7.568 to |  | $5 \mathrm{a}_{1}-0.624$ |
|  |  | $-7.672$ |  | 1s levels: |
|  |  |  |  | $\begin{aligned} & -7.146 \text { to } \\ & -7.216 \end{aligned}$ |

${ }^{a}$ The numbers in parentheses are the eigenvalues of the lowest unoccupied molecular or bitals.
$\mathbf{B}_{10} \mathbf{H}_{14}{ }^{2-}$. Reduction of $\mathrm{B}_{10} \mathrm{H}_{14}$ to the dianion and the structure of $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ were predicted from valence theory. ${ }^{4}$ This dianion can be prepared from $\mathrm{B}_{10} \mathrm{H}_{14}$ by reduction using sodium in liquid ammonia (or ether) or by reaction of $\mathrm{BH}_{4}{ }^{-}$with $\mathrm{B}_{10} \mathrm{H}_{13}{ }^{-}$. A recent X-ray diffraction study confirms the presence of two bridging hydrogens and two $\mathrm{BH}_{2}$ groups in $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ ( 2632 topology ${ }^{4}$ ). Thus in the reduction of $\mathrm{B}_{10} \mathrm{H}_{14}$, which has four bridge hydrogens in 4620 topology, there is a hydrogen rearrangement, although the boron positions change about $0.1 \AA$ or less. Three-center bond theory gives 24 resonance structures for $\mathrm{B}_{10} \mathrm{H}_{14}$ (4620) but only one valence structure for $\mathrm{B}_{10} \mathrm{H}_{14}$ rearranged to have two bridge hydrogens and two $\mathrm{BH}_{2}$ groups ( 2802 topology). Similarly $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ (2632) has 24 resonance structures but only one valence structure if it is rearranged to have four bridge hydrogens. Thus an argument based upon resonance stabilization favors the observed structures of $\mathrm{B}_{10} \mathrm{H}_{14}$ and $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2}$.

This conclusion was confirmed in a study ${ }^{30}$ by the PRDDO method ${ }^{14}$ in which $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ in the 2632 topology was found to be about $150 \mathrm{kcal} / \mathrm{mol}$ more stable than $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ in the four-bridge (4450) topology having the geometry of $\mathrm{B}_{10} \mathrm{H}_{14}$. Also, for $\mathrm{B}_{10} \mathrm{H}_{14}$ the 4620 topology is favored over the 2802 topology ( $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ geometry) by about $50 \mathrm{kcal} / \mathrm{mol}$. Less certain, because of the unknown detailed distances, is the indication from PRDDO theory that for $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{-}$the $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ geometry is more stable than the $\mathrm{B}_{10} \mathrm{H}_{14}$ geometry by about $50 \mathrm{kcal} / \mathrm{mol} .{ }^{30}$

If the substitution chemistry of $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ exists one might conclude that electrophilic attack on boron occurs in the order $B_{1} \approx B_{6} \approx B_{5}>B_{2}$ (Tables VI and VII), although the outermost charges suggest that atoms $B_{1}$, $B_{6}$, and $B_{5}$ are comparable and that $B_{2}$ should be last in this order. However, electron loss dominates the

[^7]chemistry of $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$. Iodination yields $\mathrm{B}_{10} \mathrm{H}_{14}$ and $\mathrm{I}^{-}$, and anhydrous HCl also yields $\mathrm{B}_{10} \mathrm{H}_{14} \cdot{ }^{31}$

Localization of the molecular orbitals has, so far, been performed ${ }^{32}$ on an INDO wave function which yields the fractional three-center bond description deduced ${ }^{21}$ on the basis of similar bonding situations in simpler molecules. ${ }^{3 d, 5}$ Further studies of localized orbitals, derived from PRDDO wave functions, for $\mathrm{B}_{10} \mathrm{H}_{14}$ and $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ are in progress here.
Orbital energies which are apparently unstable with respect to loss of an electron (positive eigenvalues) occur for various numbers of orbitals in the negative ions: six in $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$ (SCF), four in $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ (SCF), one for $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ (SCF) and none for $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{2-}$ (PRDDO, below). In the closed polyhedral species, these numbers correspond to the relative reactivities ( $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}>$ $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}>\mathrm{B}_{12} \mathrm{H}_{12}{ }^{2-}$ ), although other factors such as change of coordination number of boron from five to six, and change of valence electron-orbital ratios from 0.87 to 0.84 to 0.83 , may be related. Using a modified CNDO method, Armstrong, Perkins, and Stewart ${ }^{29}$ find three occupied orbitals having positive eigenvalues in $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$, seven in $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$, and four in $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{2-}$. However, their ordering of one-electron energies, particularly in the occupied outer valence levels, is not in good agreement with our results.
These outermost occupied orbitals having positive eigenvalues imply that the binding potential is too weak in the SCF approximation used here. These occupied orbitals may in some future study be stabilized by (a) optimization of exponents in the SCF wave functions, (b) extension of the basis set to the Hartree-Fock limit, (c) inclusion of electron correlation, and (or) (d) solvation of the ion.

[^8]Table XI. Diamagnetic Susceptibility and Tensor Components ${ }^{a}$

|  | $\chi_{x x}{ }^{\mathrm{d}}$ | $\chi_{y y}{ }^{\mathrm{d}}$ | $\chi_{z{ }^{\mathrm{d}}}$ | $\chi^{\mathrm{d}}$ | $\chi^{\mathrm{p}}$ |
| :--- | :---: | ---: | ---: | ---: | ---: |
| $\mathrm{B}_{8} \mathrm{H}_{12}$ | -766.979 | -608.964 | -467.968 | -614.637 |  |
| $\mathrm{~B}_{9} \mathrm{H}_{15}$ | -626.844 | -896.873 | -955.929 | -826.552 |  |
| $\mathrm{~B}_{6} \mathrm{H}_{6}{ }^{2-}$ | -314.791 | -314.791 | -314.791 | -104.928 |  |
| $\mathrm{~B}_{10} \mathrm{H}_{10}{ }^{2-}$ | -773.651 | -773.651 | -655.803 | -734.430 | +602.430 |
| $\mathrm{~B}_{10} \mathrm{H}_{14}{ }^{2-}$ | -1458.547 | -1540.628 | -993.366 | -1330.847 |  |

${ }^{a}$ All quantities are in ppm (cm $\left.{ }^{3} / \mathrm{mol}\right)$. ${ }^{b}$ A. Kaczmarczyk and G. Kolski, J. Phys. Chem., 68, 1227 (1964).

Table XII. ${ }^{11}$ B Chemical Shifts (experimental) ${ }^{a}$

|  |  | $\delta, \mathrm{ppm}$ |
| :--- | :--- | :--- |
| $\mathrm{B}_{8} \mathrm{H}_{12}$ | $\mathrm{~B}(4,5,7,8)$ | -7.50 |
|  | $\mathrm{~B}(3,6)$ | +19.4 |
| $\mathrm{~B}_{8} \mathrm{H}_{15}$ | $\mathrm{~B}(1,2)$ | +22.0 |
|  | $\mathrm{~B}(1)$ | -17.2 |
|  | $\mathrm{~B}(5,8$ or 6,7$)$ | -7.1 |
|  | $\mathrm{~B}(6,7$ or 5,8$)$ | -3.3 |
|  | $\mathrm{~B}(3)$ | -3.5 |
|  | $\mathrm{~B}(4,9)$ | +32.9 |
|  | $\mathrm{~B}(2)$ | +47.5 |
| $\mathrm{~B}_{6} \mathrm{H}_{6}{ }^{2-}$ | $\mathrm{B}(1)$ | +1.0 |
| $\mathrm{~B}_{10} \mathrm{H}_{10}{ }^{2-}$ | $\mathrm{B}(1)$ | 4.9 |
|  | $\mathrm{~B}(2)$ | $+28.2 \pm 1$ |

a All ${ }^{11} \mathrm{~B}$ chemical shifts relative to $\mathrm{BF}_{3} \cdot \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$.

Table XIII. ${ }^{1} \mathrm{H}$ Chemical Shifts (experimental) ${ }^{a}$

|  |  | $\delta, \mathrm{ppm}$ |
| :---: | :--- | :---: |
| $\mathrm{B}_{8} \mathrm{H}_{12}$ | $\mathrm{H}_{\mathrm{t}}(4,5,7,8)$ | -3.93 |
|  | $\mathrm{H}_{\mathrm{t}}(1,2$ or 3,6$)$ | -1.18 |
|  | $\mathrm{H}_{\mathrm{t}}(3,6$ or 1,2$)$ | -0.83 |
|  | $\mathrm{H}_{\mathrm{B}}$ | +2.33 |
|  | $\mathrm{H}_{\mathrm{B}}$ | +3.17 |
| $\mathrm{~B}_{10} \mathrm{H}_{10}{ }^{2-}$ | $\mathrm{H}(1)$ | -0.9 |
|  | $\mathrm{H}(2)$ | -4.3 |

a All ${ }^{1} \mathrm{H}$ shifts are relative to tetramethylsilane.

Magnetic Properties. A minimum-basis set of Slater orbitals is known to yield values of diamagnetic susceptibilities and diamagnetic contributions to the chemical shift which are accurate to a few per cent. ${ }^{13,33,34}$ These quantities are averages over the ground-state molecular wave function. The diamagnetic susceptibility $\chi^{\mathrm{d}}$ is proportional to $\Sigma_{i}\left\langle r_{i}{ }^{2}\right\rangle$ for all electrons, $i$, where the origin can be taken at the molecular center of mass. Similarly, the diamagnetic shift $\sigma^{\mathrm{d}}$ is proportional to the average $\Sigma_{i}\left\langle r_{i}{ }^{-1}\right\rangle$ for all electrons, where the origin is usually taken at the nucleus for which the shift is computed. Total susceptibilities and shielding are obtainable only upon additional calculation of the paramagnetic parts $\chi^{p}$ and $\sigma^{\mathrm{p}}$, respectively, which require an optimized basis set at least three times the size of those used in the present study. We shall exhibit values of $\chi^{p}$ and $\sigma^{p}$ from our calculated values of $\chi^{\mathrm{d}}$ and $\chi^{\mathrm{d}}$, from the relations $\chi^{p}=\chi-\chi^{\mathrm{d}}$ and $\sigma^{\mathrm{p}}=\sigma-\sigma^{\mathrm{d}}$, when the values of $\chi$ and $\sigma$ are known. The results for magnetic susceptibility are summarized in Table XI.

Experimental ${ }^{11} \mathrm{~B}$ and ${ }^{1} \mathrm{H}$ chemical shifts ${ }^{35}$ are given
(33) (a) E. A. Laws, R. M. Stevens, and W. N. Lipscomb, J. Chem. Phys., 56, 2029 (1972); (b) E. A. Laws, R. M. Stevens, and W. N. Lipscomb, J. Amer. Chem. Soc., 84, 4661 (1972).
(34) (a) W. N. Lipscomb, "MTP International Review of Science, Theoretical Chemistry," W. Myers Brown, Ed., Medical and Technical Publishing Co., Oxford, England, 1972, pp 167-196; (b) W. N. Lipscomb, "Advances in Nuclear Magnetic Resonance," Vol. 2, J. T. Waugh, Ed., Academic Press, New York, N. Y., 1966, 137.

Table XIV. ${ }^{11} \mathrm{~B}$ Diamagnetic Chemical Shifts

|  | Atom | $\sigma^{\mathrm{d}}$ |
| :---: | :---: | :---: |
| $\mathrm{B}_{8} \mathrm{H}_{12}$ | $\mathrm{~B}_{1}$ | 411.132 |
|  | $\mathrm{~B}_{2}$ | 411.356 |
|  | $\mathrm{~B}_{3}$ | 402.132 |
|  | $\mathrm{~B}_{4}$ | 389.427 |
|  | $\mathrm{~B}_{7}$ | 391.365 |
| $\mathrm{~B}_{9} \mathrm{H}_{15}$ | $\mathrm{~B}_{1}$ | 432.116 |
|  | $\mathrm{~B}_{2}$ | 424.058 |
|  | $\mathrm{~B}_{3}$ | 391.309 |
|  | $\mathrm{~B}_{4}$ | 414.632 |
|  | $\mathrm{~B}_{5}$ | 418.201 |
|  | $\mathrm{~B}_{6}$ | 402.651 |
|  | $\mathrm{~B}_{1}$ | 367.282 |
|  | $\mathrm{~B}_{6} \mathrm{H}_{6}{ }^{2-}$ | 431.291 |
| $\mathrm{~B}_{10} \mathrm{H}_{10}{ }^{2-}$ | $\mathrm{B}_{2}$ | 440.182 |
| $\mathrm{~B}_{10} \mathrm{H}_{14}{ }^{2-}$ | $\mathrm{B}_{1}$ | 377.614 |
|  | $\mathrm{~B}_{3}$ | 381.052 |
|  | $\mathrm{~B}_{5}$ | 370.049 |
|  | $\mathrm{~B}_{9}$ | 358.658 |

Table XV. ${ }^{1} \mathrm{H}$ Chemical Shifts

|  | Atom | $\sigma^{\text {d }}$ | $\sigma^{\text {abs }}$ | $\sigma^{\text {P }}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{B}_{8} \mathrm{H}_{12}$ | 1 | 203.687 | 26.23 or 25.78 | -177.46 or -177.90 |
|  | 2 | 203.338 | 26.23 or 25.78 | -177.11 or -177.56 |
|  | 3 | 197.307 | 25.78 or 26.23 | -171.53 or -171.08 |
|  | 4 | 186.168 | 28.91 | -157.26 |
|  | 7 | 187.557 | 28.91 | -158.65 |
|  | 9 | 222.208 | 35.1 or 35.9 | -187.11 or -186.31 |
|  | 10 | 230.338 | 35.1 or 35.9 | -195.24 or -194.44 |
|  | 11 | 221.711 | 35.1 or 35.9 | -186.61 or -185.81 |
| $\mathrm{B}_{9} \mathrm{H}_{15}$ | 1 | 218.144 |  |  |
|  | 2 | 216.031 |  |  |
|  | 3 | 196.950 |  |  |
|  | $3{ }^{\prime}$ | 219.226 |  |  |
|  | 4 | 210.262 |  |  |
|  | 5 | 211.825 |  |  |
|  | 6 | 198.246 |  |  |
|  | 11 | 236.088 |  |  |
|  | 12 | 248.016 |  |  |
|  | 13 | 242.265 |  |  |
| $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$ | $\mathrm{H}_{1}$ | 164.907 |  |  |
| $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ | $\mathrm{H}_{1}$ | 216.340 | 32.05 | -184.29 |
|  | $\mathrm{H}_{2}$ | 225.395 | 32.05 | -193.34 |
| $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ | 1 | 198.696 |  |  |
|  | 3 | 200.923 |  |  |
|  | 5 | 193.434 |  |  |
|  | 9 | 187.289 |  |  |
|  | $9{ }^{\prime}$ | 207.935 |  |  |
|  | $\mathrm{H}_{\mathrm{B}}$ | 223.572 |  |  |

in Tables XII and XIII. These total chemical shifts do not parallel the calculated diamagnetic shifts (Tables XIV and XV) because of the large paramagnetic contributions. Absolute ${ }^{1} \mathrm{H}$ chemical shifts are known,
(35) (a) $\mathrm{B}_{8} \mathrm{H}_{12}$, R. Rietz, R. Schaeffer, and L. Sneddon, Inorg. Chem., 11, 1242 (1972); (b) $\mathrm{B}_{9} \mathrm{H}_{15}$, A. Allerhand, A. Clouse, R. Rietz, T. Rosenberry, and R. Schaeffer, J. Amer. Chem. Soc., 94, 2445 (1972); (c) $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$ and $\mathrm{B}_{10} \mathrm{H}_{10} 0^{2-}$, G. Eaton and W. N. Lipscomb, "Nuclear Magnetic Resonance of Boron Compounds," W. A. Benjamin, New York, N. Y., 1969.

Table XVI. PRDDO Energy Analysis ${ }^{a}$

|  | $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$ | $\mathrm{B}_{8} \mathrm{H}_{12}$ | $\mathrm{~B}_{9} \mathrm{H}_{15}$ | $\mathrm{~B}_{10} \mathrm{H}_{10}{ }^{2-}$ | $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Nuclear attraction energy | -686.454 | -1036.027 | -1234.004 | -1360.556 | -1431.954 |
| Nuclear repulsion energy | 153.615 | 283.782 | 357.539 | 376.672 | 410.386 |
| Kinetic energy | 153.454 | 204.139 | 230.395 | 253.023 | 256.023 |
| $-E / T$ | 0.9859 | 1.0004 | 1.0007 | 0.9954 | 0.9954 |
| Total energy | -151.291 | -204.212 | -230.561 | -252.558 | -254.736 |
| Ionization potential $b$ |  | 0.364 | 0.376 |  | -304.140 |

${ }^{a}$ Atomic units. ${ }^{b}$ Ionization potential of highest occupied molecular orbital.
among these species, only for $\mathrm{B}_{8} \mathrm{H}_{12}$ and $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ (Table XV) from the ${ }^{1} \mathrm{H}$ absolute shifts for $\mathrm{B}_{2} \mathrm{H}_{6}\left(\mathrm{H}_{\mathrm{t}}\right.$, $29.0 ; \mathrm{H}_{\mathrm{b}}, 33.3$ ) and the ${ }^{1} \mathrm{H}$ shifts in $\mathrm{B}_{8} \mathrm{H}_{12}$ and $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ relative to $\mathrm{B}_{2} \mathrm{H}_{6}$. Some ambiguities ${ }^{338}$ in the ${ }^{1} \mathrm{H}$ shifts $\mathrm{B}_{8} \mathrm{H}_{12}$ give rise to the different possible values of $\sigma^{\mathrm{p}}$ for hydrogens in $\mathrm{B}_{8} \mathrm{H}_{12}$ as indicated in Table XV. Probably owing to internal tautomerism the chemical shifts relating to positions $4,5,7$, and 8 appear to be equivalent ( $C_{2 v}$ ) in the nmr spectra. However, our calculated values were obtained using the $C_{s}$ symmetry of the X-ray diffraction study ${ }^{17}$ of $\mathrm{B}_{8} \mathrm{H}_{12}$ (Figure 1). In $\mathrm{B}_{9} \mathrm{H}_{15}$ and in $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{13}$ the ${ }^{11} \mathrm{~B}$ diamagnetic shifts for different boron atoms within the molecule do not follow the order of the total chemical shift.

PRDDO Calculations. The new method of partial retention of diatomic differential overlap (PRDDO) ${ }^{14}$ promises to provide an efficient procedure for studying the electronic structure of polyatomic molecules. This method aims for a compromise between maximum accuracy and sophistication in molecular computations while requiring a minimum in computer time. Basic to the PRDDO method is the requirement of only $\mathrm{N}^{3}$ integrals over N atomic orbitals, instead of the $\mathrm{N}^{4}$ integrals required by SCF theory. However, a small component of $\mathrm{N}^{4}$ still remains because of the transformation to Löwdin orthogonalized atomic orbitals (OAO's). Halgren and Lipscomb ${ }^{14}$ have shown that the " N 3 approximation" is indeed a good approximation. After the transformation to the OAO basis, all one-, two-, and three-center $1 / r_{12}$ integrals are evaluated approximately. Rotational invariance is achieved by defining components of nonspherical atomic orbitals (e.g., $\mathrm{p}_{x}, \mathrm{p}_{y}, \mathrm{p}_{z}$ ) in terms of local principal axes, and, therefore, there is no need for single-center averaging processes. The version of PRDDO used in these calculations is parameterized by a least-squares fitting of the two-electron matrix elements calculated from the unparameterized PRDDO method with the two-electron matrix of a large number of ab initio minimum-basis set calculations. The PRDDO procedure is objective in that it does not require experimental parameters (e.g., valence-state ionization potentials) or assumptions regarding the bonding in molecules. In this sense, then, PRDDO is strongly related to nonempirical or $a b$ initio methods, rather than to semiempirical methods (e.g., CNDO and INDO).

We have used a Slater basis set having exponents as listed in Table I. The PRDDO charge distribution is in excellent agreement with the $a b$ initio calculations. The inner shell eigenvalues and Mulliken charges (Table VI) agree with the minimum-basis set results extremely well, and, in all cases, the predictions regarding electrophilic and nucleophilic substitution are the same as indicated by the ab initio calculations. The overlap populations (Table V) are also in good agreement with the ab initio
results, and in every case (except for the $\mathrm{B}_{1}-\mathrm{B}_{2}$ bond in $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ ) the relative values of the overlap populations are in the same directions as the $a b$ initio values. We also report overlap populations, inner shell eigenvalues, and Mulliken charges for $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{2-}{ }^{36}$ (Tables V and VI). Detailed comparison of these PRDDO results with those obtained by a different approximate method by Armstrong, Perkins, and Stewart ${ }^{29}$ indicates that the PRDDO results are very much closer to the SCF results for these molecular properties.

Energetics from the PRDDO calculations are listed in Tables XVI and XVII. The eigenvalues agree well in magnitude and, in most cases, in ordering with the minimum-basis set eigenvalues (Table X ). The only discrepancies in ordering occur in $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$ ( $2 \mathrm{e}_{\mathrm{g}}$ and $3 \mathrm{a}_{1 \mathrm{~g}}$ reversed), $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ ( $4 \mathrm{a}_{1}$ and $2 \mathrm{e}_{2}$ reversed), and $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ ( $8 \mathrm{~b}_{1}$ and $3 \mathrm{a}_{2}$ reversed). There are also only two positive eigenvalues for $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$, as opposed to four obtained in the ab initio calculation; however, the $a b$ initio calculation yields only +0.007 au for two of the four positive eigenvalues.

We have recently localized PRDDO wave functions for $\mathrm{B}_{8} \mathrm{H}_{12}$ using the Boys' method ${ }^{37}$ of maximizing the sum of the squares of the distances between centroids of charge of the molecular orbitals. Earlier in this paper, we pointed out that for $\mathrm{B}_{3} \mathrm{H}_{12}$, as well as for the other molecules discussed here, PRDDO excellently reproduces the $a b$ initio SCF charge distribution. Work underway in this laboratory ${ }^{38}$ indicates that LMO's for boranes obtained from PRDDO wave functions by Boys' procedure are nearly always in very good agreement with LMO's obtained from ab initio SCF wave functions employing the Edmiston-Ruedenberg ${ }^{2 a}$ localization method.

The localized valence structure for $\mathrm{B}_{8} \mathrm{H}_{12}$ is illustrated in Figure 6a and the topologically allowed structures in Figures 6b, 6c, and 6d. The interesting feature about the $\mathrm{B}_{8} \mathrm{H}_{12}$ localization is the participation of $\mathrm{B}_{1}$ in six bonds (some fractional) to other atoms. In boranes and carboranes previously studied, fractional bonds to any one boron atom have not exceeded five total bonds. ${ }^{39}$ The localized valence structure is readily seen to be a simple combination of the topologically allowed ${ }^{68}$ valence structures, and the localized structure 6a is an especially good compromise between structure 6 c which has a $\mathrm{B}_{3}-\mathrm{B}_{1}-\mathrm{B}_{4}$ three-center bond and the originally proposed ${ }^{22}$ structure for this molecule (6b),

[^9]Table XVII. PRDDO Eigenvalues

| $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}\left(\mathrm{O}_{h}\right)$ | $\mathrm{B}_{8} \mathrm{H}_{12}\left(C_{3}\right)$ | $\mathrm{B}_{9} \mathrm{H}_{15}\left(\mathrm{C}_{3}\right)$ | $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}\left(D_{4 d}\right)$ | $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}\left(\mathrm{C}_{2 v}\right)$ | $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{2-}\left(\mathrm{O}_{h}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (3t ${ }_{2 \mathrm{~g}} 00.794$ ) | $\left(10 a^{\prime \prime}+0.080\right)$ | (11a $\left.{ }^{\prime \prime} 00.084\right)$ | ( $5 \mathrm{e}_{1}+0.585$ ) | $\left(10 b_{1}+0.546\right)$ | $\left(1 g_{g}+0.609\right)$ |
| $\begin{array}{lll}3 \mathrm{t}_{14} & 0.122\end{array}$ | 17a' -0.365 | 20a' 0.376 | $4 \mathrm{e}_{1}+0.025$ | $4 \mathrm{a}_{2}+0.063$ | $1 \mathrm{~g}_{u}-0.067$ |
| $2 \mathrm{t}_{2 \mathrm{~g}} \quad 0.024$ | $9 a^{\prime \prime}-0.447$ | $10 a^{\prime \prime}-0.441$ | $3 \mathrm{e}_{2}-0.018$ | $7 \mathrm{~b}_{2}-0.042$ | $3 \mathrm{~h}_{\mathrm{g}}-0.101$ |
| $3 \mathrm{a}_{18}-0.132$ | $16 a^{\prime}-0.469$ | $19 a^{\prime}-0.466$ | $3 \mathrm{e}_{3}-0.064$ | $13 a_{1}-0.047$ | $3 \mathrm{tan}_{14}-0.190$ |
| $2 \mathrm{e}_{\mathrm{g}}-0.133$ | $8 \mathrm{a}^{\prime \prime}-0.476$ | $18 a^{\prime}-0.472$ | $5 \mathrm{a}_{1}-0.073$ | $9 \mathrm{~b}_{1}-0.066$ | $2 \mathrm{t}_{2 \mathrm{u}}-0.218$ |
| $2 \mathrm{t}_{\mathrm{Lu}}-0.232$ | $15 a^{\prime}-0.486$ | $9 a^{\prime}-0.477$ | $3 \mathrm{e}_{1}-0.115$ | $12 a_{1}-0.088$ | $3 \mathrm{a}_{\mathrm{g}}-0.282$ |
| $2 \mathrm{a}_{1 \mathrm{~g}}-0.486$ | $14 a^{\prime}-0.500$ | $17 \mathrm{a}^{\prime},-0.504$ | $5 b_{2}-0.154$ | $8 \mathrm{~b}_{1}-0.101$ | $2 \mathrm{~h}_{\mathrm{g}}-0.335$ |
| 1 s levels: | $13 a^{\prime}-0.522$ | $16 a^{\prime}-0.513$ | $4 \mathrm{~b}_{2}-0.183$ | $3 \mathrm{a}_{2}-0.103$ | $2 \mathrm{t}_{10}-0.535$ |
| -7.018 to | $7 a^{\prime}-0.534$ | $8 a^{\prime \prime}-0.515$ | $4 a_{1}-0.236$ | $11 a_{1}-0.109$ | $2 a_{g}-0.682$ |
| -7.027 | $12 a^{\prime}-0.556$ | $15 a^{\prime}-0.536$ | $2 \mathrm{e}_{2}-0.244$ | $6 \mathrm{~b}_{2}-0.133$ | 1 s levels: |
|  | $6 \mathrm{a}^{\prime \prime}-0.575$ | $7 \mathrm{a}^{\prime \prime}-0.552$ | $2 \mathrm{e}_{3}-0.255$ | $10 \mathrm{a}_{1}-0.160$ | -7. 209 to |
|  | $11 a^{\prime}-0.606$ | $14 a^{\prime}-0.567$ | $1 \mathrm{~b}_{1}-0.285$ | $5 \mathrm{~b}_{2}-0.168$ | -7.219 |
|  | 5a'ı -0.661 | $13 a^{\prime}-0.612$ | $2 \mathrm{e}_{1}-0.417$ | $7 \mathrm{~b}_{1}-0.173$ |  |
|  | $10 a^{\prime}-0.663$ | $12 \mathrm{a}^{\prime}-0.621$ | $3 \mathrm{~b}_{2}-0.474$ | $6 \mathrm{~b}_{1}-0.228$ |  |
|  | $9 a^{\prime}-0.690$ | $6 a^{\prime \prime}-0.640$ | $3 \mathrm{a}_{1}-0.610$ | $9 a_{1}-0.247$ |  |
|  | $8 a^{\prime}-0.795$ | $11 a^{\prime}-0.708$ | 1 s levels: | $8 a_{1}-0.264$ |  |
|  | $4 a^{\prime \prime}-0.855$ | $10 a^{\prime}-0.726$ | -7.131 to | $4 \mathrm{~b}_{2}-0.289$ |  |
|  | $7 \mathrm{a}^{\prime}-0.931$ | $5 \mathrm{a}^{\prime \prime}-0.739$ | -7.173 | $5 \mathrm{~b}_{1}-0.306$ |  |
|  | $6 a^{\prime}-1.033$ | $9 a^{\prime}-0.857$ |  | $2 \mathrm{a}_{2}-0.310$ |  |
|  | 1s levels: | $8 a^{\prime}-0.950$ |  | $7 \mathrm{a}_{1}-0.366$ |  |
|  | -7.567 to | $7 a^{\prime}-1.036$ |  | $6 a_{1}-0.433$ |  |
|  | -7.656 | 1s levels: |  | $4 \mathrm{~b}_{1}-0.496$ |  |
|  |  | -7.568 to |  | $3 \mathrm{~b}_{2}-0.512$ |  |
|  |  | -7.685 |  | $5 a_{1}-0.623$ |  |
|  |  |  |  | 1 s levels: $-7.156 \text { to }$ |  |
|  |  |  |  | -7.220 |  |

${ }^{a}$ The numbers in parentheses are the eigenvalues of the lowest unoccupied molecular orbital.

a

(2)
c

(i)
b

(2)
d

Figure 6. Localized valence structure and topologically allowed valence structures for $\mathrm{B}_{8} \mathrm{H}_{12}$. Structure 6 a is the localized valence structure for $\mathrm{B}_{8} \mathrm{H}_{12}$. Structures $6 \mathrm{~b}, 6 \mathrm{c}$, and 6 d are the topologically allowed structures for this molecule, and the numbers in parentheses give the number of structures with the illustrated topology. The structures equivalent to 6 c and 6 d are determined by the molecular symmetry ( $C_{s}$ ). The localized valence structure for $\mathrm{B}_{8} \mathrm{H}_{15}$ is obtained by replacing the isolated BHB group (on the right of Figure 6a) by a $\mathrm{BH}\left(\mathrm{BH}_{2}\right) \mathrm{HB}$ group.
which has a rather long ( $1.82 \AA$ ) $\mathrm{B}_{3}-\mathrm{B}_{4}$ single bond interaction.
Localized orbitals have also been obtained for $\mathrm{B}_{8} \mathrm{H}_{10}$, again by maximizing the sum of the squares of the distances of the centroids of the MO's. The preferred simplied valence structure, as indicated by this localization, is very similar to the localized valence structure for $\mathrm{B}_{8} \mathrm{H}_{12}$, with $\mathrm{B}_{1}$ participating in six bonds to borons $\mathrm{B}_{4}$, $B_{5}, B_{8}$, and $B_{9}$. A paper on the localized valence structures for the boranes presented in this paper and other large boron hydrides is now in preparation, ${ }^{40}$ and

[^10] W. Lipscomb, to be submitted for publication.
therein the $\mathrm{B}_{8} \mathrm{H}_{12}$ and $\mathrm{B}_{9} \mathrm{H}_{15}$ localizations will be discussed in greater detail.

Finally, the computer time ${ }^{41}$ required for a PRDDO calculation on $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$, for example, was only 4 min on the IBM $360 / 91$ computer. We compare this to the 1.5 hr for the $a b$ initio SCF calculation on the IBM $360 / 195$. The $360 / 195$ is faster by about a factor of 2 than the $360 / 91$ for these types of calculations.

## Conclusions

The ab initio SCF results agree well with experiment, where comparisons are possible for properties relating to electron density and one-electron operators. Theoretical studies of smaller boron hydrides have yielded much insight into the molecular structures of these molecules, and it is very encouraging that minimumbasis set SCF treatments appear to describe important features of the electronic structure of the larger boron hydrides. One next logical step in the study of the larger boranes would be a determination of the localized valence strictures. This study is now under way in this laboratory using the approximate localization method of Boys. ${ }^{38}$

The PRDDO method clearly reproduces $a b$ initio minimum-basis set results excellently. The method requires about the same computer time as do CNDO or INDO methods, which are considerably less accurate.

Acknowledgments. We wish to thank Dr. D. A. Kleier of this laboratory for the PRDDO results for $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{2-}$. We also wish to acknowledge IBM Research Institute, San Jose, Calif., and E. Clementi for supplying computer time for the SCF calculations. J. H. H. and D. S. M. would like to personally thank H. Popkie and H. Kistenmacher for friendship during their
(41) The times referred to do not include elapsed times.
stay at IBM. Part of this work was supported by the Office of Naval Research.

Special thanks go to Dr. R. M. Stevens for the use of his polyatomic SCF program and for help with some of
the calculations. We wish to thank a referee for communicating Professor Riley Schaeffer's unpublished results for $\mathrm{B}_{9} \mathrm{H}_{15}$ to us prior to publication of this manuscript.

# Cyclic Allenes. I. The Electronic Structure and Probable Deformation of the Allene Linkage When Included in a Ring. An INDO-MO Study 

Paul W. Dillon and Graham R. Underwood*<br>Contribution from the Department of Chemistry, New York University, Bronx, New York 10453. Received December 7, 1972


#### Abstract

As a model for the medium and small cyclic allenes, INDO-MO calculations have been performed on a large number of distorted geometries of allene. Both the lowest singlet and triplet states were calculated, and the effect of geometrical distortion on total energy, charge distribution, and spin distribution were investigated. The calculations indicate that singlet 1,2-cyclooctadiene and 1,2-cycloheptadiene are probably bent at C-2 and also twisted somewhat from the orthogonal geometries. These distortions also bring about a moderate increase in charge separation, as compared with linear allenes. They further indicate that the singlet states of the smaller cyclic allenes are probably planar and bent. In these cases there is considerable charge delocalization and the allene moiety may best be considered as an allyl cation with an anion located at C-2 in the in-plane sp ${ }^{x}$ orbital. For the triplet state the allene moiety is probably planar in all cases and is bent if the ring contains six or fewer atoms. These systems have little charge separation and may best be visualized as an allyl radical with a second unpaired electron in the in-plane $p$ (or $\mathrm{sp}^{x}$ ) orbital at C-2. Finally the calculations indicate that while 1,2 -cycloheptadiene and larger cyclic allenes would have singlet ground states, 1,2-cyclohexadiene and smaller cyclic allenes may have triplet ground states.


The synthesis and isolation or trapping of highly strained molecules, such as polycyclic compounds with a number of small fused rings, small and medium ring acetylenes, and trans-olefins, has been an area of extensive research in organic chemistry during the past thirty years. The normal allene linkage requires a fixed geometrical arrangement of seven atoms, with open chain allenes having a linear structure and two orthogonal $\pi$ bonds (I).


In $I$, the plane defined by $R_{1}, R_{2}, C_{1}$, and $C_{2}$ is perpendicular to that defined by $R_{3}, R_{4}, C_{3}$, and $C_{2}$. Molecular models suggest that the allene linkage can be included in only nine-membered or larger rings without distortion. If the ring size is decreased below this, it becomes necessary to deform the allene linkage in order to close the ring. Two deformations will facilitate ring closure. The first consists of bending the allene group at $\mathrm{C}_{2}$, about an axis perpendicular to one of the methylene planes. This will introduce s character into the $p$ orbital at $\mathrm{C}_{2}$ which is perpendicular to the bending axis and which participates in one of the $\pi$ bonds. This deformation will presumably weaken that $\pi$ bond (II). The second deformation would retain the linear $\mathrm{C}_{1}-$ $\mathrm{C}_{2}-\mathrm{C}_{3}$ linkage, but would require one of the methylene

groups to be twisted to form a more nearly planar allene. This would tend to form a linear allyl arrangement of $p$ orbitals with one nonbonding p orbital, perpendicular to the $\pi$ system at $\mathrm{C}_{2}$ (III).


III
Of course, some mixture of both bending and twisting may occur and possibly is necessary in the seven- and eight-membered cyclic allenes. If both bending and twisting did occur simultaneously, it would most probably take the form of bending at $\mathrm{C}_{2}$, resulting in the weakening of the $\pi$ bond between $\mathrm{C}_{2}$ and $\mathrm{C}_{3}$ (say), coupled with twisting of the $\mathrm{C}_{3}$ methylene around this weakened $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond. This twisting of the weakened $\pi$ bond while retaining the essentially normal double bond would be expected to lead to a more stable structure than would twisting of the $\mathrm{C}_{1}$ methylene about $\mathrm{C}_{1}-\mathrm{C}_{2}$, which would destroy the normal $\pi$ bond. In the ex-


[^0]:    (1) For a review, see W. N. Lipscomb, "The Chemistry of Boron Hydrides," E. L. Muetterties, Ed., in press.
    (2) (a) C. Edmiston and K. Ruedenberg, Rev. Mod. Phys., 35, 467 (1963); (b) J. E. Lennard-Jones, Proc. Roy. Soc., Ser. A, 198, 1, 14 (1949); (c) G. G. Hall and J. E. Lennard-Jones, ibid., 202, 155 (1960); (d) J. E. Lennard-Jones and J. A. Pople, ibid., 202, 166 (1950); (e) J. E. Lennard-Jones and J. A. Pople, ibid., 210, 190 (1951).
    (3) (a) E. Switkes, R. M. Stevens, W. N. Lipscomb, and M. D. Newton, J. Chem. Phys., 51, 2085 (1969); (b) E. Switkes, W. N. Lipscomb, and M. D. Newton, J. Amer. Chem. Soc., 92, 3847 (1970); (c) I. R. Epstein, J. A. Tossell, E. Switkes, R. M. Stevens, and W. N. Lipscomb, Inorg. Chem., 10, 171 (1971).
    (4) W. N. Lipscomb, "Boron Hydrides," W. A. Benjamin, New York, N. Y, 1963.
    (5) (a) D. S. Marynick and W. N. Lipscomb, J. Amer. Chem. Soc., 94, 8692 (1972); (b) D. S. Marynick and W. N. Lipscomb, ibid., 94, 8699 (1972); (c) I. R. Epstein, D. S. Marynick, and W. N. Lipscomb, ibid., 95, 1760 (1973).
    (6) (a) I. R. Epstein and W. N. Lipscomb, Inorg. Chem., 10, 1921 (1971); (b) I. R. Epstein, Inorg. Chem., 12, 709 (1973).

[^1]:    (14) T. A. Halgren and W. N. Lipscomb, Proc. Nat. Acad. Sci. U. S., 69, 652 (1972); (b) T. A. Halgren and W. N. Lipscomb, J. Chem. Phys., 58, 1569 (1973).
    (15) R. M. Stevens, J. Chem. Phys., 52, 1397 (1970).
    (16) (a) C. C. F. Roothaan, Rev. Mod. Phys., 23, 69 (1951); (b) G. G. Hall, Proc. Roy. Soc., Ser. A, 205, 541 (1951).
    (17) R. E. Enrione, F. P. Boer, and W. N. Lipscomb, Inorg. Chem., 3,1659 (1964).
    (18) (a) R. E. Dickerson, P. J. Wheatley, P. A. Howell, and W. N. Lipscomb, J. Chem. Phys., 27, 200 (1957); (b) R. Schaeffer, private communication.

[^2]:    (19) C. H. Schwalbe and W. N. Lipscomb, Inorg. Chem., 10, 160 (1971).
    (20) D. S. Kendall and W. N. Lipscomb, Inorg. Chem., 12, 546 (1973).

[^3]:    (21) R. Schaeffer, Q. Johnson, and G. S. Smith, Inorg. Chem., 4, 917 (1965).
    (22) Reference 4, p 29.

[^4]:    ${ }^{a}$ Cumulative number of electrons in the highest occupied MO's on the given B atom, starting with the highest occupied MO for column 1, the highest two MO's for column 2, etc.

[^5]:    (25) (a) R. W. Parry and L. J. Edwards, J. Amer. Chem. Soc., 81, 3554 (1959); (b) W. N. Lipscomb, J. Inorg. Nucl. Chem., 11, 1 (1959).
    (26) R. Schaeffer and L. G. Sneddon, Inorg. Chem., 11, 3102 (1972).
    (27) (a) W. H. Eberhardt, B. L. Crawford, Jr., and W. N. Lipscomb, J. Chem. Phys., 22, 989 (1954); (b) H. C. Longuet-Higgins and M. deV. Roberts, Proc. Roy. Soc., Ser. A, 224, 336 (1954).

[^6]:    (28) E. L. Muetterties and W. H. Noth, "Polyhedral Boranes," Marcel Dekker, New York, N. Y., 1968.
    (29) D. R. Armstrong, P. G. Perkins, and J. P. Stewart, J. Chem. Soc. A, 627 (1973).

[^7]:    (30) D. A. Kleier, private communication.

[^8]:    (31) M. F. Hawthorne, "The Chemistry of Boron and Its Compounds," E. L. Muetterties, Ed., Wiley, New York, N. Y., 1967, Chapter 5.
    (32) M.D. Newton, private communication.

[^9]:    (36) B-B distances are set equal to $1.77 \AA$ and B-H distances are 1.2 $\AA$. A regular icosahedron is assumed.
    (37) S. F. Boys, Rev. Mod. Phys., 32, 300 (1960); J. M. Foster and S. F. Boys, ibid., 32, 300 (1960); 'S. F. Boys, "Quantum Theory of Atoms, Molecules and the Solid State," P.-O. Lowdin, Ed., Academic Press, New York, N. Y., 1966, p 253.
    (38) T. Halgren, D. Kleier, J. Hall, Jr., and W. Lipscomb, to be submitted for publication.
    (39) W. N. Lipscomb, Accounts Chem. Res., 6, 257 (1973).

[^10]:    (40) D. Dixon, J. Hall, Jr., T. Halgren, D. Kleier, L. Brown, and

